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Traffic Flow Simulation for an Urban
Freeway Corridor

LONNIE E. HAEFNER AND MING-SHIUN LI

The objective of this paper is to develop a realistic and operational
macroscopic traffic flow simulation model which requires relatively
less data collection efforts.  Such a model should be capable of delin-
eating the dynamics of traffic flow created by the merging and diverg-
ing activities and complex geometric conditions.  In addition, it should
have the capability of describing shock wave phenomena and move-
ments along the freeway corridor.  A modification of the existing equi-
librium speed-density function was made.  The modified equilibrium
speed-density model provided a greater degree of accuracy in describ-
ing the nonlinear speed-density relationship.  A modified macroscopic
traffic flow simulation model was developed in conjunction with the
modified speed-density model.  The resulting simulation model showed
considerable success in simulating actual freeway conditions, and more
importantly, provided accurate solutions of ramp metering requirements
for the study section.  Key words:  traffic flow simulation, speed-den-
sity relationship, ITS/ATMS application.

INTRODUCTION

The approaches to traffic flow theory may be microscopic or mac-
roscopic.  The microscopic approach has resulted in car-following
theories which study the behavior of one vehicle following another.
The macroscopic approach is analogous to theories of fluid dy-
namics or continuum theories.  Macroscopic traffic flow models
are characterized by representations of traffic flow in terms of ag-
gregate measures such as volume, space mean speed, and density.
Unlike microscopic models which represent individual vehicle
movements, macroscopic models sacrifice a great deal of detail but
gain by way of efficiency an ability to deal with problems of much
larger scope.  An important feature of these latter theories is the
conservation of vehicles.  It is particularly useful in describing the
generation of waves in a traffic stream, their speed, and the behav-
ior of vehicles passing through the waves.

Many older urban freeway corridors are characterized with heavy
traffic flow, numerous on- and off-ramps and multiple weaving ar-
eas, and poor geometric conditions.  Existing macroscopic models
generally failed to simulate the traffic operations of such freeway
corridors due to their unique characteristics.  Therefore, modifica-
tions of existing macroscopic traffic flow simulation techniques
are necessary to adequate study such fully saturated freeway corri-
dors.

In addition, the data requirements for existing simulation pack-
ages are rather sophisticated.  Data usually are collected in an in-
terval between 5 to 30 seconds.  Recently developed models usu-
ally require information gathered in a five-second interval.
Certainly, applying more detailed data may result in relatively su-
perior models.  Although today’s technology supports such data
collection needs, buying such expensive sophisticated data collec-
tion equipment is still a major budget concern for many cities and
states.  The development of a less expensive simulation model in
terms of data collection is necessary for cities and states that have
budget constraints.  Such model development certainly will pro-
vide a better opportunity to implement advanced traffic manage-
ment techniques in these organizations.

The objective of this paper is to develop a realistic and opera-
tional macroscopic traffic flow simulation model which requires
relatively less data collection efforts.  Such a model should be ca-
pable of delineating the dynamics of traffic flow created by the
merging and diverging activities and complex geometric conditions.
In addition, it should have the capability of describing shock wave
phenomena and movements along the freeway corridor.

BACKGROUND

A variety of macroscopic models of traffic flow on freeways have
been developed during the past two decades.  Among those mod-
els, Payne’s FREFLO is the most well known freeway simulation
package.  Payne (1,2) formulated a variant of the equilibrium speed-
density hypothesis that overcomes the spontaneous lockup prob-
lem by adding a “look-ahead” term to the speed equation.  In Payne’s
formulation, the equilibrium speed is the speed appropriate for the
local density plus a term appropriate for the next downstream sec-
tion.  Although the anticipation term eliminates the spontaneous
lockup problem, several studies pointed out that there are other
problems with equilibrium speed-density formulations that make
them untenable, especially under congested flow conditions (3,4,5).

A major extension of Payne’s is due to Papageorgiou et al.
(6,7,8,9).  Applying a similar space-time descritization of the con-
servation equation, Papageorgiou further assumed that traffic vol-
ume between two freeway sections might be expressed as a weighted
sum of the traffic volumes corresponding to the densities of the
sections.  Papageorgiou’s model is well validated and is capable of
describing complicated traffic phenomena with considerable accu-
racy.  However, it consists of a number of nonlinear equations, and
required computation time and cost is considerably higher.

Michalopoulos et al. (10,11) proposed a simulation model which
used the simple continuum modeling based on the conservation
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equation and an equilibrium speed-density relationship.  He argued
that the hypothesis of an equilibrium speed-density relationship
proposed by Payne (1) may not hold, especially at congested and
interrupted flows.  As such, he developed a model for simulating
congested and interrupted flows which does not contain an equilib-
rium speed-density relationship.

The most noticeable inaccuracy in the above models was the
instability in simulating severe congestion with extremely high
density.  The instability occurred when the traffic entering the free-
way from an on-ramp was relatively higher than its normal load,
and the densities in the study section as well as adjacent sections
tended to be unstable.  The potential “lockup” of density was also a
major problem of such instability.  As such, modifications of the
flow conservation equation as well as other components are neces-
sary (12,13,14,15).

SIMULATION MODEL FORMULATION

Finite difference methods are the most common approaches to de-
velop macroscopic traffic simulation models.  The time and space
continuum of traffic flow is divided into discrete intervals to form
a difference mesh, and the continuous equation is numerically ap-
proximated at the lattice points of the mesh.  A criterion ∆x/∆t>u

f

has to be met in the discretization process, where ∆x is the distance
increment of the mesh, ∆t is the time increment, and u

f
 is the free-

flow speed.  This criterion was included to ensure that the law of
traffic flow conservation was not violated, and further, to improve
model convergence and numerical stability (16).

Four simulation models were developed by employing finite
difference methods with the above criterion.  The structures of these
models are presented below.

Model A

Applying the forward difference method, a discretized conserva-
tion equation identical to the FREFLO formula was obtained.
Equation (1):
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mainline traffic leaving the freeway via off-ramps in section j.

∆ t  = time interval, 1 minute;
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j
 = section length (miles)

l
j
 = number of lanes;

A necessary boundary condition for Equation (1) is

)()(1 nknk jj =+  if there is no downstream section.

Equation (2) represents the dynamic speed-density relationship:
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(n)] = equilibrium speed-density relationship;
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The first term of the right hand side of Equation (2) is the equi-
librium speed function.  The second term of the right hand side is
an adjustment to speed by relating to the equilibrium speed.  The
third term provides an adjustment to speed by relating to the chang-
ing density in the downstream section.  This third term takes into
account the effect of drivers’ reaction to the changes of traffic con-
dition ahead, as they will either increase or reduce the speed ac-
cording to the changing densities in the adjacent downstream sec-
tion.

Equation (3) is the relation to flow-speed-density.  The quantity
q

j
(n+1) in Equation (3) is defined as the flow rate passing through

the downstream boundary of section j during time n+1.
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where β
2j
 is the proportion of mainline traffic leaving the free-

way via the off-ramps downstream to the critical location of sec-
tion j.  Both the values of β

1j
 and β

2j
 were obtained from the col-

lected data.  It was found that the ratios of off-ramp volumes to
mainline volumes were nearly constant.

Model B

The first Equation (4) of Model B is a modified conservation equa-
tion which was obtained also by applying the forward difference
method.  The first term of the right hand side in Equation (1), k

j
(n),

was replaced by a linear combination of k
j
(n) and k

j+1
(n).  The first

two terms on the right hand side of Equation (4), α
j
 x k

j
(n) and (1-

α
j
) x k

j+1
(n), represent adjustments in changing density with respect

to the density measures in the subject and downstream sections,
respectively.  That is, Equation (4) describes the change in section
density by taking into account a “look-ahead” factor—the impact
of density in the downstream section.  The least squares method
was used to calibrate the constant α

j
.  The speed-density Equation

(5) was simplified by using the steady-state equilibrium function.
The complete set of Model B is presented as the following:
Equation (4):
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α
j
 = constant
The objective of this modification was to examine and evaluate

the choice of α
j
 in conjunction with the simplified speed–density

equation to eliminate the tendency of density “lockup” and insta-
bility.

Model C

The flow conservation equations in both Model A and Model B
were discretized using the forward difference method.  The central
difference method was employed to develop the third model.  Us-
ing the central difference method with a minor modification, the
conservation equation can be discretized in terms of space and time
in the following form:
Equation (7):
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Equation (7) describes traffic density in progression quite real-
istically, as a future example will illustrate.  However, a minor ad-
justment has to be made to increase the accuracy of the model.  A
boundary condition of Equation (7) is same as the one in the previ-

ous models, that is, )()(1 nknk jj =+  if there is no downstream

section.  In addition, a necessary boundary condition to this model

is that, )()(1 nknk jj =−  if there is no upstream section.  The model

does not work well at the first and the last sections due to the above
boundary condition. Thus, Equation (7) was modified as the fol-
lowing:

Equation (8):
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The equilibrium speed-density equation is applied directly to
obtain the simulated section mean speed. That is,

Equation (9):
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The flow-speed-density equation is Equation (10):

)1()1()1( +⋅+⋅=+ nunklnq jjjj

Model D

Model D is the most complicated model developed in this paper.
The conservation equation obtained from the central difference
method, Equation (7), was further modified by adding another term
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where )(nqw
j = effective weaving volume in section j at time n

θ
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 = weaving constant of section j
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)(nqw
j  is computed by summing the volumes of on- and off-

ramps within the weaving area.  The addition of this new term takes
into account the weaving conflict in traffic flow simulation.  The
speed-density equation of Model A, Equation (2), was applied to
this model.  The flow-speed-density equation of this model is iden-
tical to the one in Model C, that is, Equation (10).

SPEED-DENSITY RELATIONSHIP

Another major modification is the interpretation and construction
of the speed-density relationship.  The first steady-state speed-den-
sity model is introduced by Greenshields (17), who proposed a lin-
ear relationship between speed and density.  Various models were
developed following Greenshields’ direction, including a logarith-
mic model (18), generalized single-regimes models (19,20,21), and
multiregime models (22).  These models in fact can be summarized
in a fairly general form as Equation (12):
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The above formula can be transformed into Equation (13):
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From speed-density curves as shown in Figure 1, it was found

that the speed-density relationships can be viewed as two different
curves separated by the corresponding critical density.  Therefore,
Equation (13) can be rewritten as Equation (14):
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The method of least squares was applied to the curve fitting pro-
cess.  As shown in Figure 1, the resulting model generally describes
the relationship between speed and density with greater accuracy.

MODEL APPLICATION AND RESULT EVALUATION

The above models were calibrated and applied to simulate a 5.4-
mile section of the I-64-40 corridor in the St. Louis metropolitan
area.  The study area is comprised of the eastbound and westbound
sections between Kingshighway Boulevard on the east and
McKnight Road on the west, as illustrated in Figure 2.

The simulation results showed that Model A, shared a similar
structure to FREFLO, had a high tendency of “lockup” phenom-
enon.  That is, the density tended to increase very fast and exceeded
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addition of the weaving term in Model D captures the traffic dy-
namics amplified by the weaving operation in sections 3 and 4.
The results of Model D are illustrated in Figures 3 to 5.  These
graphics vividly show the propagation of congestion along the free-
way corridor and the description of the shock wave phenomenon
with respect to time and space.

CONCLUSIONS

Modification of existing macroscopic traffic flow simulation
techniques is necessary to adequate study fully saturated
freeways with multiple ramps in short distance, multiple weaving
areas, poor geometric design, and short sight distances, such as
the I-64-40 corridor.  A successful modification of the modeling
approaches has been successfully developed.  The modified
simulation model takes into account the impacts of merging and
diverging activities and weaving operations, resulting in
significant improvement in accuracy in simulating the dynamics
of traffic operations.

In addition, the data requirements of the developed traffic flow
simulation model are less complicated.  The simulation model re-
sults in high accuracy in simulating the traffic dynamics in real
time, and it is sufficient for the development of advanced traffic
management programs.  Thus, it provides significant cost savings
in data collection and model implementation.

The simulation model presented herein is useful to simulate the
changes of traffic conditions with the employment of control strat-
egies.  Various Advanced Traffic Management Systems (ATMS)
control strategies can be developed in conjunction with the simula-
tion model.  The freeway simulation model provides an essential
requirement for the successful development of a comprehensive

FIGURE 1  Equilibrium speed-density relationship.

the reasonable values.  Model B, on the other hand, performed much
better than Model A.  However, Model B did not simulate well in
sections 3 and 4, although it did capture the dramatic increase in
density in section 3.  The simulation for section 4 generally under-
estimated the density, and the instability was again a problem of
this model.

The results of Model C showed the improvement of the simula-
tion in section 4 as well as the overall model stability.  However, it
underestimated the impact of the weaving traffic in sections 3 and
4 and failed to capture the dynamics accurately.

The results of Model D showed great improvement in simula-
tion accuracy and stability, especially in sections 2, 3, and 4.  The

FIGURE 2  Schematic diagram of study site.



  5
Haefner and Li

Intelligent Transportation System (ITS) program.  Continued re-
search and implementation of the model refinement will result in
improved freeway efficiency and quality of life for many metro-
politan areas.
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